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APPLYING SIEVING TO THE COMPUTATION 
OF QUADRATIC CLASS GROUPS 

MICHAEL J. JACOBSON, JR. 

ABSTRACT. We present a new algorithm for computing the ideal class group 
of an imaginary quadratic order which is based on the multiple polynomial 
version of the quadratic sieve factoring algorithm. Although no formal analysis 
is given, we conjecture that our algorithm has sub-exponential complexity, and 
computational experience shows that it is significantly faster in practice than 
existing algorithms. 

1. INTRODUCTION 

Let OA, A < 0, be the imaginary quadratic order of discriminant A. By Cl we 
denote the class group of OA, the factor group of all invertible OA-ideals divided by 
the subgroup of principal fractional OA-ideals, and by h = IC11 we denote the class 
number. Equivalently, we can consider Cl as the group of equivalence classes of 
positive definite binary quadratic forms of discriminant A with respect to GL(2, 2). 
We will freely interchange between the two models by means of the map 

0: f *a, 

aX2+bXY+cy2 -*a7+ \ 2, 2 
which converts a binary quadratic form of discriminant A to an ideal of OA and 
preserves the isomorphism between both definitions of the class group, i.e., f g 
if and only if q(f) -$(g). 

A well-known problem in computational number theory is the computation of the 
structure of the class group. More precisely, one wishes to compute the elementary 
divisors of Cl, i.e., the positive integers m1,.. ., m, such that mi I mi+l for 1 < i < s 
and 

8 

Cl @ e2/mi2. 
i=l1 

Currently, the best available algorithm is due to Hafner and McCurley [11], and 
has expected running time LA (VX) under the assumption of the Extended Riemann 
Hypothesis (ERH), where 

LA 
/ ,)\ __ 

exp 
/ |A|1__1 
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Their algorithm is based on a factoring algorithm due to Seysen [14], in which 
relations are generated by factoring random forms using trial division. 

Since Hafner and McCurley's algorithm appeared, factoring algorithms have 
greatly improved in efficiency. Most of the improvements are due to replacing 
trial division by sieving techniques. These new algorithms not only have better 
conjectural complexities than previous algorithms, but have also enabled integers 
of well over 100 decimal digits to be factored, a huge increase over the size of about 
60 digits that was previously manageable. 

In contrast, class group computation has lagged behind. Buchmann and Diillman 
[7, 6] have proposed and implemented a more practical version of Hafner and Mc- 
Curley's algorithm. The largest discriminant for which the class group has been 
computed with this algorithm has 55 decimal digits. Its class group was computed 
by Diillman [6] in about 10 days on a distributed system of workstations using trial 
division combined with the single large prime variant. 

In this paper, we present a new algorithm for computing class groups of imagi- 
nary quadratic orders. Like Hafner and McCurley's algorithm, our algorithm is also 
based on a modern factoring algorithm, namely the multiple polynomial version of 
the quadratic sieve (MPQS) [15]. In the next two sections, we describe our algo- 
rithm and present some computational results we have obtained using it. Finally, 
we discuss some possible enhancements to our algorithm. 

2. THE ALGORITHM 

Our algorithm follows the same general strategy as that in [11]. We first compute 
a factor base FB consisting of invertible prime ideals such that some subset of FB 
generates Cl. If (p) E {0, 1} for some prime p (where (X) denotes the Kronecker 
symbol), then the prime ideal corresponding to p is given by 

(1) p = 2(p) =p + 2 
+ 

where 0 < bp < p and bp-A (mod 4p). The following well-known theorem allows 
one to factor any given ideal into a distinct power product of prime ideals. 

Theorem 2.1. If for some invertible ideal a = aZ + Z we have 

N(a) f J pt(P), 
p prime 

where by N(a) (= a) we denote the norm of a, then a is equivalent to 

fI p (p) e- (p) t (p), 

p prime 

where e(p) E {-1, 1} is such that b_ e(p)bp (mod 2p). 

Let k = IFBI. For v /Jk, v 7(vl,...,vk)T,we define 

k 

(2) FBR fl Pi 
i=1 

where pi E FB. We call v7 a relation if FBR OA, i.e., the ideal given by FBR? 
is principal. Our algorithm produces a generating system A = (v1,... , V) of the 
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relation lattice 

(3) A= V I kFBv OA}. 

That relation lattice is the kernel of the homomorphism 

(4) 2k -*Cl,v JFBv. 

Since the classes of the ideals of FB generate the class group, it follows that the 
homomorphism (4) is surjective, and we have 

Cl- 2k/A. 

This implies that A is a k-dimensional lattice and its determinant is equal to h. 
The diagonal elements which are greater than 1 in S, the Smith normal form of 
A, are precisely the elementary divisors of Cl. If S = UAV, with U, V E GL(k, 2), 
then at very little extra cost one can compute a system of generators of Cl using 
the transformation matrix U (for details see [10]). 

The major difference between our approach and that of [11] is in the way the 
generating system A of A is produced. Hafner and McCurley's solution was to 
attempt to factor randomly produced ideals over the factor base. We replace this 
step by a sieve-based strategy similar to that used in the MPQS factoring algorithm. 

We need one important observation in order to apply the MPQS to class group 
computation. This observation is a well-known property of binary quadratic forms, 
and was pointed out by Seysen [14] as a possible improvement of his factoring 
algorithm. It is also used by Paulus [13] in his more general algorithm for computing 
the ideal class group of a quadratic extension over a Euclidean ring. 

Proposition 2.2. If a form f = aX2 + bXY + Cy2 represents an integer n, i.e., 
f (x, y) = n for some x, y E 2, then there exists a form g = nX2 + b'XY + c'Y2 
that is equivalent to f. 

Proof. Such a form g can be constructed by solving the linear Diophantine equation 

(5) ux + vy = 1 

for u and v and then applying the transformation matrix 

[x V1 eGL(2,2) 

to f, yielding the form g = f (x, y)X2 + (2(asu+ ctv) + b(sv +tu))XY+ f(u, v)y2 
nX2 + b'XY + C'Y2. Since g is obtained from f via a unimodular transformation of 
variables, we have f g. Note that each solution of (5) results in a different form 
g, all of which are equivalent to f and have leading coefficient n. D 

In the MPQS, one sieves over quadratic polynomials F(X) = aX2 + bX + c 
in order to find values of x for which F(x) completely factors over a finite factor 
base of prime integers. In our case, we compute an ideal a as a power product 
of the prime ideals in our factor base FB and sieve over the corresponding form 
f = ?-1(a) in order to find values of x such that f(x, 1) = n completely factors 
over the norms of the prime ideals in our factor base. For each such value x, we 
compute a form g = nX2 + b'XY + C'y2 f using Proposition 2.2 and the ideal 
b = ?(g). Since we know the factorization of N(b) = n, we can easily compute the 
factorization of b into prime ideals using Theorem 2.1. Finally, since we also know 
that a b (because f g), ba-1 is principal, and if a = FBe and b = FBR for 

e, vEk, then the vector v - e is a relation. 
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We now describe our algorithm in detail. We compute a factor base FB consist- 
ing of the k invertible prime ideals of smallest norm. Let Pmax = Pk be the ideal in 
FB with the largest norm, and let Pmax = N(Pmax). A theorem of Bach [2] tells us 
that in order to ensure that our factor base contains a generating system of Cl (as- 
suming ERH) we need Pmax > 6 log2IAL if A is fundamental and Pmax > 12 log21AL 
otherwise. Since the linear algebra step in our' algorithm is rather expensive, we 
allow the possibility of using a smaller factor base. In this case, we have to test 
whether the prime ideals not in the factor base with norms less than 6 log21AL 
(12 log2 AI) are contained in the group generated by the prime ideals in the factor 
base. To check this, as pointed out in [8], it is sufficient to find a principal ideal of 
the form 

(6) p (P) 
-- 

F B6 

v E 2k, for each prime p such that Pmax < p < 6 1og2 (12og2 zA1) and (p) E 
{0, 1}. For each such p we compute 

(7) a = p(p)e?FB, 

where eO = ?1 and the exponent vector e E {-1, 0, l}k is selected such that 

N (a) 
VIWA 

m 

where M is the radius of our sieving interval, i.e., each application of sieving will 
be performed over the interval (-M, M). We set f = -1 (a) and sieve f (X, 1) over 
(-M, M) using the norms of the prime ideals in FB as potential divisors. If we 
find some x E (-M, M) such that f (x, 1) factors completely over the norms of the 
ideals in FB, we know that some ideal of the form (6) exists and p is generated 
by the ideals in FB. Otherwise, we select another ideal a and try again. If after 
several attempts we are still unable to show that p(p) is generated by FB, we add 
this ideal to FB. 

At the moment, we select k from a precomputed list of values which were found 
to be optimal for the MPQS factoring algorithm implemented in the LiDIA system 
[4], and the sieve radius is computed using the rule of thumb M = 4 X Pmax. 
Experimental results [12] seem to indicate that the prime ideals of norm less than 
12loglAl generate the class group in most cases, and that on average 0.7JoglAl is 
a sufficient bound, so if Pmax log LA we will probably have a complete generating 
system. 

During the generation of the factor base, we also compute a value h* such that 
the class number is guaranteed (again assuming ERH) to lie in the interval ( 2 , h*). 
We first compute L (1, xA), an estimate of L (1, xA), via an average of truncated 
Euler products (see Bach [3]), such that 

IL (1lXA) - L(, xA) I < d2- 

Then, from the analytic class number formula, 

(8) h* = L (1, XA) 

serves our purpose (see [10] for a proof). 
At this point, our algorithm diverges somewhat from the algorithm in [11] and 

more closely follows the MPQS. Again, we set M to be the radius of our sieving 
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interval. We select some value of ko < k and compute an ideal a such that 

(9) a = FBe 

where the exponent vector e {-1, 0, i}k is selected such that ei = 0 for ko < i < k 
and 

N (a) IAI 

This is similar to the self-initializing variant of the MPQS, where one computes a 
polynomial whose leading coefficient is of the same size as N(a) and is also a square- 
free product of small primes. In the same way as in Buchmann and Diillman's 
algorithm [7, 6], selecting ko < k encourages the relation matrix to be sparse for 
the rows ko to k (see [7, 6]). We select ko = k/50, a somewhat larger value than 
that suggested in [7, 6], since our exponents are selected from a smaller set and we 
want to ensure that there are sufficiently many possible exponent vectors to choose 
from. Now set f = ?-q1(a) = aX2 + bXY + CY2, F(X) = f (X, 1) = aX2 + bX + c, 
and sieve F(X) over the interval (-M, M) using the norms of the prime ideals in 
FB as potential divisors. If for some x E (-M, M) and integers Wi, 1 < i < k, we 
have 

k 

F(x) = fl N(p)wi = n, 
i=l 

then f represents n at (x, 1) and we can apply Proposition 2.2 to compute a form 
g = nX2 + b'XY + C'y2 f and an ideal b = q(g) with N(b) = n. Since we 
know the factorization of N(b), we can apply Theorem 2.1 to compute exponents 
wi = iwi such that 

(10) b = FBw 

is the complete factorization of b over FB. Finally, since a - b, we have 

ba-1 = FBWFB-e = FB'-e ( OA 

and the vector v7 = w - e is a relation. We add this relation to the relation matrix 
A, our potential generating system of the relation lattice A. 

We continue to produce relations until we have at least IFBI + c of them for 
some small constant c (we found c = 20 was normally sufficient). Since we want 
the relation matrix to be non-singular, it is necessary that each prime ideal in FB 
be represented in at least one relation. This is by no means a guarantee that the 
matrix will be non-singular, but it seems to work well in practice. For each pj E FB 
such that vj = 0 for all relations v7 e A, we compute an ideal a as in (9), except 
here we force ej = ?1. We also select ei from {-1, 0, 1} for all i < k, i =& j, since 
usually only a small number of relations are generated in this step and the overall 
sparseness of the matrix is not greatly affected. We execute the sieving step on a as 
before and add to A the first relation v7 that we find which has vj =& 0. We repeat 
this step for each such pj until every ideal in FB is represented in a relation. 

The rest of the algorithm follows very closely that of [11]. We compute the 
Hermite normal form of the relation matrix A, and if det A = 0 or det A > h*, 
we compute a few more relations (we used 20 here). When 0 < det A < h*, we 
know that A = A is a complete generating system of A. We compute S, the Smith 
normal form of A, and the diagonal elements of S which are greater than 1 are the 
elementary divisors of Cl. 
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We summarize our method in the following algorithm. 

Algorithm 2.1. 
Input: A < 0 (the discriminant of OA), M, ko, and k as described above. 

Output: m1, ... ., in, the elementary divisors of Cl. 

1. Set A = (). Compute h* from (8). Compute FB as above such that IFBR k, 
and set Pmax = N(Pk). If Pmax > 12log2IAL (6log2ILI if A is fundamental), 
go to Step 3. 

2. For each p such that Pmax < N(p) < 12 log2I Al (6 log2 LAI if A is fundamental): 

(a) Compute a as in (7). 
(b) Set f = b-1(a) and sieve f(X,1) over (-M,M). If there is no x E 

(-M, M) such that f (x, 1) factors completely over the norms of the ideals 
in FB, go to Step 2a. If we have tried 1000 different ideals without 
success, add p to FB. 

3. Compute e E {-1, 0, l}k and a as in (9). 
4. Set f = 0-1(a), F(X) = f (X, 1). Sieve F(X) over (-M, M). 
5. For each x E (-M, M) such that F(x) completely factors over the norms of 

the prime ideals in FB: 
(a) Compute the exponents -wi such that F(x) = flk N(pjoi. 
(b) Solve ux + v1. 
(c) Compute g by applying the transformation matrix [I -v ] to f. Compute 

b =b(g)I 
(d) Compute w such that wi = ?iwi and b = FBW, using Theorem 2.1. 
(e) Set A=(A,'v), where v J= w - e. 

6. If the number of relations we have computed is less than IFBI + 20, go to 
Step 3. 

7. For each pj E FB such that vj = 0 for all relations v E A, execute Step 3 to 
Step 5e. Force ej = 1 in Step 3 and exit Step 5 after the first relation v7 with 

vj 7& 0 is found. 
8. Compute the Hermite normal form of A and set h = det A. If h = 0 or h > h*, 

execute Step 3 to Step 5e until 20 more relations have been found, and repeat 
Step 8. 

9. Compute S, the Smith normal form of A, and return the diagonal elements 
of S that are greater than 1. 

As stated above, the parameters M, ko, and k are selected based on knowledge 
and experience from other algorithms. It is probable that further experiments will 
enable us to find optimal values for our algorithm. In particular, since the linear 
algebra step of our algorithm is somewhat more difficult than that of factoring 
algorithms, it is likely that a slightly smaller factor base will turn out to be optimal. 

If we ensure that the factor base and sieve radius have sub-exponential size, 
then it is reasonable to expect that we can generate O( FBR) relations in about 
the same time as the MPQS, since these parts of the algorithms are so similar. 
However, since the relations are generated by a process which is not completely 
random, it is not clear to us how to analyze the probability that a new relation lies 
outside the current relation lattice. Thus, we are unable to compute the expected 
number of relations required to generate a relation matrix with full rank, and a 
complete analysis of our algorithm eludes us. 
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3. COMPUTATIONAL RESULTS 

We have implemented most of our algorithm as part of the LiDIA system, which 
is currently being developed at the Technische Hochschule Darmstadt [4]. The 
Hermite normal form computations were done by Patrick Theobald using special 
techniques which exploit the sparseness of the relation matrices and are not yet 
implemented in LiDIA. 

We present the results of applying our algorithm to compute the class groups 
of four imaginary quadratic orders with various size discriminants. Table 1 gives 
the discriminant, factorization of the discriminant (computed from a system of 
generators of the class group), class number, and elementary divisors of the class 
group for each of these orders. The number in parenthesis after the discriminant 
is the number of decimal digits. The class group is presented as [m1 m2 ... mi], 

where the mi are the elementary divisors. 

TABLE 1. Class groups of some imaginary quadratic orders 

A1 -4 x F7= 4 x (22 + 1) (40) 
= -1 x 22 x 59649589127497217 x 5704689200685129054721 

h 17787144930223461408 
Cl [2 8893572465111730704] 

2 (4 x 1054 + 4) (55) 
= -1 x 22 x 101 x 109 x 9901 x 153469 x 999999000001 x 597795771563/ 
34533866654838281 

h 1056175002108254379317829632 
Cl [2 2 2 2 2 33005468815882949353682176] 

3 -56759029509462061499204078404947821190422701840487390196283 (59) 
= -1 x 235942923943814840172714410183 x 2405625418246410575130433/ 
26701 

h 34708563502858399116135176220 
Cl [34708563502858399116135176220] 
L4 -(4 x 1064 + 4) (65) 

= -1 x 22 x 1265011073 x 15343168188889137818369 x 515217525265213/ 
267447869906815873 

h 178397819605839608466892693850112 
Cl [4 4 11149863725364975529180793365632] 

L5 -46952046735522451306774137871578512166228058934334430430/ 
26971349460603 (70) 

h ??? 
Cl ??? 

Table 2 contains some of the run-time statistics collected during the generation 
of the relation matrices. Here, k, ko, and M are as defined above, "# rels" is 
the number of relations computed, "# forms" is the number of forms which were 
generated in Step 3 of Algorithm 2.1, t2 is the CPU time in minutes required by 
Step 2 (if required), tL is the is the total CPU time in minutes required to generate 
the relation matrix, i.e., Steps 1 to 6 in Algorithm 2.1, and "time" is the total CPU 
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TABLE 2. Run-time statistics 

A k ko Pmax # rels M # forms t2 tL time 
Al 1000 20 17389 1058 69556 480 4.15 5.75 7.95 
A2 4100 82 83459 4254 333836 5503 12.15 108.20 532.24 
A3 5500 110 117577 5685 470308 16255 - 315.75 2338.28 
A4 7300 146 157243 7579 628972 27369 - 855.05 6457.28 
L 5 8800 176 194771 9041 779084 143678 - 5007.42 ? 

time in minutes required by Algorithm 2.1. The computations were all carried out 
on a SPARC-ultra computer. 

We knew beforehand that all of our discriminants were fundamental, so we were 
able to use the upper bound 6 log2JAL in Step 2. For discriminants Al and L2, 

the factor bases used did not contain all the prime ideals with norms less than this 
bound, so it was necessary to execute Step 2. 

L2 is the 55-digit discriminant for which the class group of its corresponding 
imaginary quadratic order was computed by Buchmann and Diillman [6]. Not only 
were we able to compute this class group in a fraction of the time they needed 
using a single computer without large prime variation, but we were also able to 
compute class groups for two significantly larger discriminants. In addition, we 
have computed a relation matrix for /5, a 70-digit discriminant, but so far we have 
been unable to finish the Hermite normal form computation. 

4. CONCLUSION 

One obvious improvement to our algorithm is to incorporate a large prime or 
double large prime strategy in a similar fashion to the MPQS. In factoring algo- 
rithms, it is sufficient to find a set of partial relations (f(x) factors completely over 
the factor base except for one or two slightly larger primes) such that when these 
partial relations are combined (multiplied together), the exponents of the large 
primes in the combined relation are all even. In our case, a partial relation consists 
of a principal ideal which completely factors over our factor base except for one or 
two prime ideals of slightly larger norms than the prime ideals in the factor base. 
These large prime ideals may have exponents of +1 or -1 (see Theorem 2.1). We 
want to find a product of principal ideals represented by partial relations (or their 
inverses) such that the exponents of the large prime ideals actually cancel, and we 
are left with a principal ideal which completely factors over the factor base. Buch- 
mann and Diillman [6] showed how a single large prime strategy can effectively be 
used, and it should not be a problem to extend their method to handle two large 
primes. 

Our algorithm should also be very effective in computing class groups of real 
quadratic orders. For each relation vi one would also have to compute a minimum 
ae such that FB?- (a). Then, the methods described in [5], [9], and [1] can be 
applied directly. Further experiments are currently underway in these directions. 
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